Area and Volume Homework

Let *R* be the region enclosed by the graph of $f(x) = x^4 - 2.3x^3 + 4$ and the horizontal line y = 4, as shown in the figure above.

- (a) Find the volume of the solid generated when R is rotated about the horizontal line y = -2.
- (b) Region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is an isosceles right triangle with a leg in R. Find the volume of the solid.
- (c) The vertical line x = k divides R into two regions with equal areas. Write, but do not solve, an equation involving integral expressions whose solution gives the value k.

Let R be the region in the first quadrant bounded by the graph of $y = 2\sqrt{x}$, the horizontal line y = 6, and the y-axis, as shown in the figure above.

- (a) Find the area of R.
- (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 7.
- (c) Region R is the base of a solid. For each y, where $0 \le y \le 6$, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid.
- 3.

Let *R* be the region bounded by the graphs of $y = \sqrt{x}$ and $y = \frac{x}{2}$, as shown in the figure above. (a) Find the area of *R*.

- (b) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are squares. Find the volume of this solid.
- (c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line y = 2.

